Sponsored Links
-->

Wednesday, May 30, 2018

Pulmonary arterial hypertension in familial hemiplegic migraine ...
src: erj.ersjournals.com

Familial hemiplegic migraine (FHM) is an autosomal dominant type of hemiplegic migraine that typically includes weakness of half the body which can last for hours, days or weeks. It can be accompanied by other symptoms, such as ataxia, coma and paralysis. There is clinical overlap in some FHM patients with episodic ataxia type 2 and spinocerebellar ataxia type 6, benign familial infantile epilepsy, and alternating hemiplegia of childhood. There are 3 known loci for FHM. FHM1, which accounts for approximately 50% of FHM patients, is caused by mutations in a gene coding for the P/Q-type calcium channel ? subunit, CACNA1A. FHM1 is also associated with cerebellar degeneration. FHM2, which accounts for <25% of FHM cases, is caused by mutations in the Na+
/K+
-ATPase gene ATP1A2. FHM3 is a rare subtype of FHM and is caused by mutations in a sodium channel ?-subunit coding gene, SCN1A. These three subtypes do not account for all cases of FHM, suggesting the existence of at least one other locus (FHM4). Many of the non-familial cases of hemiplegic migraine (sporadic hemiplegic migraine) are also caused by mutations at these loci. A fourth gene that has been associated with this condition is the proline rich transmembrane protein 2 (PRRT2) - an axonal protein associated with the exocytosis complex. A fifth gene associated with this condition is SLC4A4 which encodes the electrogenic NaHCO3cotransporter NBCe1.

There are also non-familial cases of hemiplegic migraine, termed sporadic hemiplegic migraine. These cases seem to have the same causes as the familial cases and represent de novo mutations. Sporadic cases are also clinically identical to familial cases with the exception of a lack of family history of attacks.


Video Familial hemiplegic migraine



Signs and symptoms

FHM signs overlap significantly with those of migraine with aura. In short, FHM is typified by migraine with aura associated with hemiparesis and, in FHM1, cerebellar degeneration. This cerebellar degeneration can result in episodic or progressive ataxia. FHM can also present with the same signs as benign familial infantile convulsions (BFIC) and alternating hemiplegia of childhood. Other symptoms are altered consciousness (in fact, some cases seem related to head trauma), gaze-evoked nystagmus and coma. Aura symptoms, such as numbness and blurring of vision, typically persist for 30-60 minutes, but can last for weeks and months. An attack resembles a stroke, but unlike a stroke, it resolves in time. These signs typically first manifest themselves in the first or second decade of life.


Maps Familial hemiplegic migraine



Causes

See the equivalent section in the main migraine article.

It is believed that FHM mutations lead to migraine susceptibility by lowering the threshold for cortical-spreading-depression generation. The FHM1 and FHM3 mutations occur in ion channels expressed in neurons. These mutations may lead to both the hyper and hypoexcitable neurons that might underlie cortical-spreading-depression. It is even less clear how the mutations seen in FHM2 patients might lead to FHM symptoms as the gene mutated in FHM2 is expressed primarily in astrocytes. One proposal states that the depolarization of astrocytes caused by haploinsufficiency of the ATP1A2 Na+
/K+
-ATPase causes increased release of compounds such as adenosine from astrocytes. These compounds then interact with neighboring neurons, altering their excitability and leading to cortical-spreading-depression and migraine.


HEADACHE Presentation By Dr. Asha Rani Natarajan - ppt download
src: slideplayer.com


Pathophysiology

FHM1 (CACNA1A)

The first discovered FHM locus was the CACNA1A gene (originally named CACNL1A4), which encodes the P/Q-type calcium channel CaV2.1. There are currently 17 known mutations in this channel, see Table 1, and these mutations are distributed throughout the channel. Some of these mutations result in patients with notable cerebellar degeneration or other dysfunction. 15 of these mutants have received at least some further analysis at the electrophysiological level to attempt to determine how they might lead to the FHM1 phenotype. There is increasing contradiction in the literature as to the end result of these mutations on channel kinetics and neuronal excitability.

A good example of this contradiction can be seen in the literature regarding the R192Q mutation. The first investigation of this mutation, using the rabbit isoform of the channel expressed in oocytes, found that it did not alter any measured channel properties. A subsequent report, using human channels expressed in HEK293 Cells, found a small hyperpolarizing shift in the midpoint for activation, a result common among FHM1 mutants. This shift results in channels that open at more negative potentials and, thus, have a higher open probability than wild-type channels at most potentials. This report also found that the R192Q mutant produced almost twice as much whole-cell current compared to wild-type channels. This is not due to a change in single channel conductance but to an equivalent increase in channel density. A subsequent group noticed that this mutation is in a region important for modulation by G protein-coupled receptors (GPCRs). GPCR activation leads to inhibition of wild-type CaV2.1 currents. R192Q mutant channel currents are also decreased by GPCR activation, but by a smaller amount. A more recent group has confirmed some of these results by creating a R192Q knock-in mouse. They confirmed that the R192Q mutant activates at more negative potentials and that neurons producing these channels have much larger whole-cell current. This resulted in a much larger quantal content (the number of neurotransmitter packets released per action potential) and generally enhanced neurotransmitter release in R192Q expressing neurons versus wild-type. Consequently, these mutant mice were more susceptible to cortical-spreading-depression than their wild-type counterparts. The most recent experiments on this mutant, however, have contradicted some of these results. In CaV2.1 knockout neurons transfected with human channels, P/Q-type currents from mutant channels are actually smaller than their wild-type counterpart. They also found a significant decrease in calcium influx during depolarization, leading to decreased quantal content, in mutant versus wild-type expressing neurons. Neurons expressing mutant channels were also less able to mediate inhibitory input and have smaller inhibitory postsynaptic currents through P/Q-type channels. Further testing with this and other mutants is required to determine their end affect on human physiology.

FHM2 (ATP1A2)

The second subtype of familial hemiplegic migraine, FHM2, is caused by mutations in the gene ATP1A2 that encodes a Na+
/K+
-ATPase. This Na+
/K+
-ATPase is heavily expressed in astrocytes and helps to set and maintain their reversal potential. There are 29 known mutations in this gene associated with FHM2, Table 2, many clustering in the large intracellular loop between membrane-spanning segments 4 and 5, Figure 1. 12 of these mutations have been studied by expression in model cells. All but one have shown either complete loss of function or more complex decreases in ATPase activity or potassium sensitivity. Astrocytes expressing these mutant ion pumps will have much higher resting potentials and are believed to lead to disease through a poorly understood mechanism.

FHM3 (SCN1A)

The final known locus FHM3 is the SCN1A gene, which encodes a sodium channel ? subunit. The only study so far that has found mutations in this gene discovered the same Q1489K mutation in 3 of 20 families (15%) with 11 other kindreds (55%) already having mutations in CACNA1A or ATP1A2. This mutation is located in a highly conserved region of an intracellular loop connecting domains three and four. This mutation results in a greatly hastened (2-4 fold) recovery from inactivation compared to wild-type. As this channel is important for action potential generation in neurons, it is expected that the Q1489K mutant results in hyperexcitable neurons.

FHM4 (1q31)

The final known locus for FHM maps to the q-arm of chromosome 1. There are a number of attractive candidate genes in this area, though no mutations in them have yet been linked to FHM4.


Genetic effects of ATP1A2 in familial hemiplegic migraine type II ...
src: media.springernature.com


Diagnosis

Diagnosis of FHM is made according to the following criteria:

  • Two attacks of each of the following:
  • Aura with motor weakness accompanied by either reversible visual symptoms (flickering lights, spots, lines, etc.), reversible sensory symptoms (pins and needles, numbness, etc.) or speech symptoms.
  • At least two occurrences of:
  • One or more aura symptoms that develop over at least 5 minutes
  • These symptoms lasting more than 5 minutes and less than 24 hours
  • Headache beginning within 60 minutes of aura onset. These headaches can last 4-72 hours, occur on only one side of the head, pulsate, be of moderate to severe intensity, and may be aggravated by common physical activities such as walking. These headaches must also be accompanied by nausea/vomiting, phonophobia (avoidance of sound due to hypersensitivity) and/or photophobia (avoidance of light due to hypersensitivity).
  • At least one close (first or second degree) relative with FHM
  • No other likely cause

Sporadic forms follow the same diagnostic criteria, with the exception of family history.

In all cases, family and patient history is used for diagnosis. Brain imaging techniques, such as MRI, CAT scans and SPECT, are used to look for signs of other familial conditions such as CADASIL or mitochondrial disease, and for evidence of cerebellar degeneration. With the discovery of causative genes, genetic sequencing can also be used to verify diagnosis (though not all genetic loci are known).


Genetic effects of ATP1A2 in familial hemiplegic migraine type II ...
src: media.springernature.com


Screening

Prenatal screening is not typically done for FHM, however it may be performed if requested. As penetrance is high, individuals found to carry mutations should be expected to develop signs of FHM at some point in life.


Kaate R J Vanmolkot's scientific contributions while affiliated ...
src: www.researchgate.net


Management

See the equivalent section in the main migraine article.

People with FHM are encouraged to avoid activities that may trigger their attacks. Minor head trauma is a common attack precipitant, so FHM sufferers should avoid contact sports. Acetazolamide or standard drugs are often used to treat attacks, though those leading to vasoconstriction should be avoided due to the risk of stroke.


PM&R Journal (@PMRJournal) | Twitter
src: pbs.twimg.com


Epidemiology

Migraine itself is a very common disorder, occurring in 15-20% of the population. Hemiplegic migraine, be it familial or spontaneous, is less prevalent, 0.01% prevalence according to one report. Women are three times more likely to be affected than males.


Evidence for a separate type of migraine with aura | Neurology
src: n.neurology.org


See also

  • Channelopathy
  • Calcium channel
  • Migraine

Also caused by calcium channel mutations:

  • Childhood absence epilepsy
  • Hypokalemic periodic paralysis
  • Juvenile myoclonic epilepsy
  • Malignant hyperthermia
  • Timothy syndrome

HEADACHE HEADACHE. - ppt download
src: slideplayer.com


References


Hemiplegic Migraine Guide | Axon Optics
src: www.axonoptics.com


External links


  • GeneReviews/NCBI/NIH/UW entry on Familial Hemiplegic Migraine
  • About.com page regarding FHM
  • International Classification of Headache Disorders

Source of the article : Wikipedia

Comments
0 Comments